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Abstract

Linear-response (LR) theory in combination with the first-principles band structure codes allows

to calculate phonons in an efficient way. In this report a formalism which enables us to apply LR

theory within an all-electron framework utilizing the relativistic full-potential linearized augmented

plane-wave (RFLAPW) method is presented. As first part, the equations for the calculations of

the atomic forces are given and they are used for the calculation of forces in α-Pu. As a second

step, a complete set of formulaes for the dynamic matrices calculation is presented.
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I. INTRODUCTION

The calculations based on the density-functional theory (the so called first-principles

calculations) are now commonly carried out for solid-state systems. Although the basic

results of such calculations are the electronic structure and the total energy of the ground

state, many other related physical properties can be obtained from them. In particular,

the first and the second derivatives of the total energy with respect to the atomic displace-

ments (atomic forces and phonon dispersions correspondingly) can be calculated directly,

i.e. without numerical differentiating of the energy.

The important application of the atomic forces consist in the geometry relaxation of the

complex crystal structures. While, the relaxation can be accomplished by directly calculating

the total energy for different atomic geometries and finding the equilibrium geometry using

some fitting procedure, such an approach is not an efficient one, especially for large systems.

A better approach is to calculate the atomic forces rather than the total energy since the

former gives much more information for using in the process of geometry relaxation.

Accordingly, it is standard in many electronic structure methods to calculate and use

atomic forces to relax the coordinates of atoms. However, until quite recently the force

calculations were used only with the pseudo-potential approximations and with plane-wave

representations for the wave functions, charge density and potential. In the all-electron

methods, such as linear-muffin-tin-orbital method (LMTO) and linear-augmented-plane-

wave method (LAPW), the atomic force calculations are complicated by the dependence

of the basis set on the atomic position. Nevertheless, the formulations of the theory for

force calculations in the LMTO1 and LAPW2–5 have been given in the last years. All these

formulations, however, are non-relativistic (scalar-relativistic) and the application of them

to the heavy elements will give some error.

In the present report the fully relativistic generalization of the formulation, developed

in [2] is given. This methodology is used to estimate the effect of geometry relaxation on

the calculated ground state properties of α-Pu. To be more exact, in the first report on

the contract B530324 the calculated total energy of α-Pu as a function of volume had been

presented, and the ground state properties had been calculated. However, these calculations

had been carried out at a fixed geometry, corresponding to the experimental one at P =

0. The crystal structure of α-Pu has, however, many structural parameters, and their
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dependencies on the volume can be different. Thus, if the geometry relaxation is performed

in the calculations, the ground state properties can be different with respect to the ones,

calculated at fixed geometry. This question for α-Pu has already been investigated by

Sadigh et al..6 They used both the full potential linear muffin-tin orbital (FPLMTO) and

the projector augmented-wave (PAW) methods. The relaxation of the structure in the

nonmagnetic PAW treatment increased the atomic volume by 3% and improved agreement

with experiment. However, the relaxation of the structure in magnetic PAW treatment

decreased the atomic volume and led to some deterioration in agreement with experiment.

In the FPLMTO treatment only the parameter c/a was optimized, and the results appeared

to be very close to the experiment.

In the present work, only the atomic force calculation has been carried out at each volume.

Full geometry relaxation has not been performed, because the RSPFLAPW method is very

time-consuming and the above task is much out of our computational resources. Instead of

that, the dependence of the calculated forces on the volume have been used to assess the effect

of geometry relaxation on the ground state properties of α-Pu, which were corresponded in

the first report.

The phonon spectra (lattice dynamics) are essential in many applications and ab-initio

calculations of them could provide insight into many problems, such as the construction

of the equations of state and the study of the superconducting properties (if the electron-

phonon interaction is calculated after the phonon spectrum has been calculated). The

most successful approach for the phonon spectra calculations (LR - linear response) has

been introduced by Baroni et al..7 In this approach, the self-consistent response to the

external perturbations is obtained by iteration, much as the charge density and potential are

obtained in the usual self-consistent band-structure calculations. Similar to the atomic forces

calculations, the majority of the linear-response calculations so far employ plane-wave basis

functions. The use of a plane-wave basis set simplifies the formalism and implementation.

However, plane-wave basis sets are not efficient for many chemical elements with spatially

localized distribution of the charge density. With a view towards the applications to such

materials, the LMTO8 and LAPW9 methods were generalized to include the possibility of

phonon spectra calculations.

The present report contain the fully relativistic generalization of the nonrelativistic ap-

proach, developed in the Ref.[9]. The equations are given for the non-spin polarized case
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only, partly because the calculations for the non-magnetic α-U are planned as a first applica-

tion, and partly because the magnetic case requires some special treatment (the time-reversal

symmetry, heavily used in this work, is absent in the magnetic case, and it must be replaced

by more general type of symmetry).

The report is organized as follows. In section II the method for atomic forces calculation

is presented. The calculational parameters and results of the forces calculations for α-Pu are

presented in section III. The relativistic variant of the linear-response theory is presented

in section IV and formulaes for dynamical matrix calculation are given in section V. Lastly,

in section VI the conclusions and future plans are offered.

II. ALL-ELECTRON RSPFLAPW FORCES

In this section we shall find the general atomic force within the relativistic spin-polarized

density-functional formalism. We shall assume that the charge density n(r), magnetization

m(r), effective potential Veff (r), and magnetic field B(r) are self-consistent. The total

energy is given10 with the equation (in atomic Ridberg units):

E[n, m] =
∑
kλ

fkλEλ(k) −
∫

Ω

drn(r)Veff (r) −
∫

Ω

drm · B(r) +

∫
Ω

drn(r)Vext(r)

+

∫
Ω

dr

∫
Ω

dr′n(r)n(r′)
| r − r′ | + Exc[n, m] + Enn, (1)

where Ω is the volume of the unit cell of a given solid, fkλ are the number of occupation

for the one-particle state with wave vector k and with band index λ, and Eλ(k) indicates

the band energy. The term Vext(r) designates a scalar external potential, representing the

nuclei electrostatic potential. The fifth term is the classical Coulomb energy. The term Exc

gives the exchange and correlation energy, which is a functional of n(r) and m(r), and the

last term Enn is an energy of nuclear-nuclear repulsion.

The band energies Eλ(k) defined from the equality

Eλ(k)

∫
Ω

drΨ†
λ(k, r)Ψλ(k, r) =

∫
Ω

drΨ†
λ(k, r)

[
Ĥkin + Veff (r) + βσ̃ · B

]
Ψλ(k, r), (2)

with the Dirac kinetic Hamiltonian Ĥkin, defined as
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Ĥkin = cα · p + (β − I)
c2

2
, (3)

where c is the velocity of light (c = 274.074 in Rydberg units), p is the momentum

operator (≡ −i∇), and the three operators, α, β, and I, denote the standart Dirac 4 × 4

matrices.

The scalar effective potential Veff (r) is defined as

Veff (r) = Vext(r) + 2

∫
Ω

dr′ n(r′)
| r − r′ | +

δExc[n(r),m(r)]

δn(r)
, (4)

whereas the effective magnetic field B(r) is obtained as

B(r) =
δExc[n(r),m(r)]

δm(r)
. (5)

The charge density, n(r), and the magnetization m(r), are defined using the Bloch

functions Ψλ(k, r) by

n(r) =
∑
kλ

fkλΨ
†
λ(k, r)Ψλ(k, r), (6)

and

m(r) =
∑
kλ

fkλΨ
†
λ(k, r)βσ̃Ψλ(k, r), (7)

respectively. Here, σ̃ denotes the 4 × 4 matrices, which are composed of the Pauli matrices

σ as

σ̃ =

 σ 0

0 σ

 . (8)

Let us consider the first order correction to the total energy (1) when the crystal is

perturbed by the periodic displacement Qtα (t designates the atoms in the unit cell, α is the

polarization):

δtαE[n, m] =
∑
kλ

fkλδtαEλ(k) −
∫

Ω

drn(r)δtαVeff (r) −
∫

Ω

drm · δtαB(r)

+

∫
Ω

drn(r)δtαVext(r) + δtαEnn, (9)
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In deriving the above equation we used the self-consistency as well as the equality

δtαExc[n, m] =

∫
Ω

dr [δtαn(r)Vxc(r) + δtαm(r) · B(r)] , (10)

Also, the term containing the change of the occupation numbers vanishes as follows from

the relations

δtαfkλ = δ(EF −Eλ(k)δtαEF +
∂fkλ

∂Eλ(k)
δtαEλ(k) = δ(EF −Eλ(k) [δtαEF − δtαEλ(k)] , (11)

and

∑
kλ

δtαfkλEλ(k) =
∑
kλ

δ(EF − Eλ(k) [δtαEF − δtαEλ(k)] Eλ(k)

= EF

∑
kλ

δ(EF − Eλ(k) [δtαEF − δtαEλ(k)]

= EF

∑
kλ

δtαfkλ = EF δtαNel = 0, (12)

It is necessary to notice that the first order correction for the coordinate depended vari-

ables, consist of two terms:1 the so called ”soft” contribution (δ̌n - for the charge density)

and the so called ”rigid” term, that goes merely from the fact that our coordinate system is

position dependent. Thus, for example (inside the MT-spheres): δn = δ̆n −∇n.

The contribution from the first term in (9) is divided into core and valence terms. For

the valence states we have

δtαEλ(k) =

∫
St

dSα

[
Ψ†

λ(k, r)ĤkinΨλ(k, r)|MT − Ψ†
λ(k, r)Ĥkin(Ψλ(k, r)|Int

]
+

∫
Ω

drδtαΨ†
λ(k, r)

[
Ĥ − Eλ(k

]
Ψλ(k, r +

∫
Ω

drΨ†
λ(k, r)

[
Ĥ − Eλ(k

]
δtαΨλ(k, r)

+

∫
Ω

dr|Ψλ(k, r)|2δtαVeff , (13)

where the surface integral is taken over the boundary of MT-sphere and it represents the

relativistic analog to the nonrelativistic contribution2 from the discontinuity at the sphere

boundary.
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The core states, being low lying in energy and localized around the nucleus, are described

in our approach by neglecting the nonspherical potential and by neglecting the magnetic

splitting at all:

[
Ĥkin + V S

eff (r)
]
Ψc

ti(r) = Ec
i Ψ

c
ti(r), (14)

where index i is used for numbering the core levels.

Taking advantage of the fact that the wave functions for the core levels are exact solutions

of (14) and that they equal to zero at the sphere boundaries, we arrive to the following

equality

δtαEc
ti =

∫
Ωt

dr|Ψc
ti(r)|2δ̆tαVeff (15)

In deriving the above equation we have also taken into account the fact that the integra-

tion in (15) is performed only over the MT-sphere, which is shifted itself. So, the ”rigid”

variation ∇Veff is cancelled for the core levels.

Substituting the Eqs.(13) and (15) in Eq. (9), we arrive to the following expression

δtαE[n, m] =
∑
kλ

fkλ

{∫
St

dSα[Ψ†
λ(k, r)ĤkinΨλ(k, r)|MT − Ψ†

λ(k, r)ĤkinΨλ(k, r)|Int]

+

∫
Ω

drδtαΨ†
λ(k, r)[Ĥ − Eλ(k]Ψλ(k, r) +

∫
Ω

drΨ†
λ(k, r)[Ĥ − Eλ(k]δtαΨλ(k, r)

}
+

∫
Ωt

drnc(r)∇αVeff (r) +

∫
Ωt

drn(r)δtαVext(r) + δtαEnn, (16)

To further simplify the above expression, it is necessary to consider explicitly the first

variation of the valence wave functions. Keeping in mind the expression10

Ψλ(k, r) =
∑
Gs

AGs
λ (k)ΦA(k + G, s; r) +

∑
tn

Ban
λ (k)Φan

B (k; r) =
∑

j′
Cj′

λ (k)Φj′(k; r), (17)

where the basis functions of all types (local and plane-wave) were unified, we obtain

δtαΨλ(k, r)|t′ =
∑

j′
δtαCj′

λ (k)Φj′(k; r)

+δtt′

[
ikαΨλ(k, r) + i

∑
Gs

GαAGs
λ (k)ΦA(k + G, s; r) −∇αΨλ(k, r)

]
, (18)
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where the terms inside the square brackets are present only inside the MT-sphere. If we

substitute this equality in (16), the contributions with δC are cancelled due to the matrix

equation
∑

j′(Hjj′ − EOjj′)Cj′ = 0. The contribution from the term ikαΨλ(k, r) in (18) is

also cancelled and, after some transformations, we arrive to the expression for the forces

Ftα = −δtαE[n, m] = −
∑
kλ

fkλ

×
{
−i

∑
Gs

GαA∗Gs
λ (k)

∫
Ωt

drΦ†
A(k + G, s; r)[Ĥ − Eλ(k)]Ψλ(k, r)

+i
∑
G′s′

G′
αAG′s′

λ (k)

∫
Ωt

drΨ†
λ(k, r)[Ĥ − Eλ(k)]ΦA(k + G′, s′; r)

−
∫

St

dSαΨ†
λ(k, r)[Ĥkin − Eλ(k)]Ψλ(k, r)|Int

}
+

∫
Ωt

drVeff (r)∇αnval(r) −
∫

Ωt

drnc(r)∇αVeff (r) −
∫

Ωt

drn(r)δtαVext(r) + δtαEnn, (19)

where the last two terms represent the so called Hellmann-Feynman (HF) contribution

to the force, and other terms are contributions that arised from the position dependence of

the basis and from the the discontinuity of the basis functions at the MT-spheres.

It is easily to see that the HF contribution is the gradient of the Coulomb potential at

nucleus multiplied with its charge Zt:
2

FHF
tα = −

∫
Ωt

drn(r)δtαVext(r) + δtαEnn

= 2Zt
∂

∂tα

[∫
Ω

dr
n(r)

| t − r | −
∑
R′t′

Zt′

| t − t′ − R′ |

]
= Zt∇αV Coul(r)|r=t (20)

The another integrals in (19) have some equivalents in the usual band structure calcula-

tions and can be evaluated analogously to them.

III. RESULTS OF CALCULATIONS OF THE FORCES FOR α-PU

The calculations have been performed with the full potential, Dirac relativistic (j, κ) ba-

sis, linear-augmented-plane-wave method (RFLAPW+LO)10 in accordance to the equations

described in the section II. The generalized gradient approximation11 has been used for the
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FIG. 1: Absolute values of the atomic forces versus relative volume. V0 is the experimental equi-

librium volume at room temperature. The numbers in the picture indicate the different types of

the atoms.

exchange and correlation in this work. The parameters of calculations were the same as

in the work [12]. The magnetic structure with the lowest energy (AFM1 - as it had been

called in [12]) was chosen for calculating the forces. The abbreviation AFM1 belongs to the

magnetic structure of antiferromagnetic type in which the atoms, related by the symme-

try operations (equivalent atoms) have the same values and directions of the moments, but

the values and directions of the moments on the nonequivalent atoms are generally speak-

ing different. The coordinates of the atoms in the unit cell of α-Pu have been taken from

Ref.[13].

The calculations have been carried out at four different volumes with V/V0 equal to

1.00, 0.95, 0.9, and 0.85, where V0 is the experimental volume of α-Pu at room temperature.

The results of the calculations are presented in the figures 1 and 2.

In the figure 1 the volume dependence of the forces acted on each of the nonequivalent

atoms in unit cell is shown. And in the figure 2 the sum of the absolute values of the forces
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FIG. 2: Total energy (left) and sum of the absolute values of forces over the atoms in the unit cell

(right). V0 is the experimental equilibrium volume at room temperature.

over all the atoms in unit cell is presented versus relative volume (right picture). On the

left picture in the figure 2 the total energy as calculated in [13] is shown for convenience.

Two things can be followed from these results. First, it seems from the figure 2 that at

the relative volumes larger than near 0.94 the compressibility of the crystal must not be

strongly affected by the structure relaxation, because the sum of the forces is practically

independent on the volume in this case. Second, at smaller volumes the effect must be

present and the smaller volume is the larger must be the lowering of the energy. So, it seems

that the relaxation will not expand the calculated equilibrium volume and, thus, will not

improve the agreement with the experiment. The same conclusion for magnetic calculations

has been given in the Ref.[6] where the full geometry relaxation has been carried out.

It clear, however, that with such an information as presented in the figure 2, one can

give only the qualitative conclusions about the effect of geometry relaxation. To give the

quantitative conclusions, one needs the full structure relaxation.

IV. DENSITY-FUNCTIONAL LINEAR RESPONSE

We now introduce an external perturbation with the wave vector q to the system:

∆tR(q) = Qte
iqR + Q∗

t e
−iqR, (21)
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where R are the vectors connected with the unit cells of the crystal.

This ”phonon” generates a first-order change in the external potential

∆1Vext(r) =
∑

t

Qt

∑
R

eiqR∇ 2Zt

|r − t − R| +
∑

t

Q∗
t

∑
R

e−iqR∇ 2Zt

|r − t − R| (22)

or

∆1Vext(r) =
∑

t

Qtδ
+Vext(r) +

∑
t

Q∗
t δ

−Vext(r) (23)

The same expression can also be written for the effective potential

∆1Veff (r) =
∑

t

Qtδ
+Veff (r) +

∑
t

Q∗
t δ

−Veff (r) (24)

The first order change in the charge density (LR-linear response), induced by the pertur-

bation (24) is represented in the same form, i.e. ∆1n(r) =
∑

t Qtδ
+n(r)+

∑
t Q

∗
t δ

−n(r) and

it is expressed in terms of the one-electron wave functions and their first-order corrections

as follows:

δ±n(r) =
∑
kλ

fkλ

{
δ±Ψ†

λ(k, r)Ψλ(k, r) + Ψ†
λ(k, r)δ±Ψλ(k, r)

}
= 2

∑
kλ

fkλΨ
†
λ(k, r)δ±Ψλ(k, r), (25)

where we used the time-reversal symmetry. The first order correction δ−Ψλ(k, r) is a

Bloch wave with wave vector k − q and it is the solution of the linearized Schödinger-type

equation:

(H − Eλ(k))δ−Ψλ(k, r) + (δ−Veff − δ−Eλ(k))Ψλ(k, r) = 0 (26)

where the change in the effective potential can be found as

δ−V (r) = δ−Vext(r) + 2

∫
Ω

dr′ δ−n(r′)
| r − r′ | +

∂Vxc

∂n
δ−n(r) (27)

The Eqs. (25)-(27) must be solved selfconsistently. This is analogous to the selfconsis-

tence circle in standard band-structure calculations.

Now we have to provide some details of the solution of the above equation.
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A. First order correction to the wave function

In this subsection some explicit formulaes for the first order corrections to the wave

functions will be given. First of all, the equation (18) must be modified to take into account

the fact that the perturbation is now non periodic, but it has a wave vector q. So, in the

δ−Ψ the components with wave vector k − q must only be retained. In the unit cell R and

within the MT-sphere of atom t it will be read as

δ±t′α′Ψλ(k, r)|Rt =
∑

j′
δ±t′α′C

j′
λ (k)Φj′(k − q; r)

+δtt′e
±iqR

{
ikα′Ψλ(k, r) + i

∑
Gs

Gα′AGs
λ (k)ΦA(k + G, s; r) −∇α′Ψλ(k, r)

}
, (28)

Let us define also the ”contracted” forms of the correction. Namely, the one without the

gradients in the MT-spheres:

δ̆±t′α′Ψλ(k, r)|Rt =
∑

j′
δ±t′α′C

j′
λ (k)Φj′(k − q; r)

+δtt′e
±iqR

{
ikα′Ψλ(k, r) + i

∑
Gs

Gα′AGs
λ (k)ΦA(k + G, s; r)

}
, (29)

the one without the variation of the coefficients:

δ̄±t′α′Ψλ(k, r)|Rt = δtt′e
±iqR

×
{

ikα′Ψλ(k, r) + i
∑
Gs

Gα′AGs
λ (k)ΦA(k + G, s; r) −∇α′Ψλ(k, r)

}
, (30)

and the one without the gradients and the variation of the coefficients:

˘̄δ
±
t′α′Ψλ(k, r)|Rt = δtt′e

±iqR
{

ikα′Ψλ(k, r) + i
∑
Gs

Gα′AGs
λ (k)ΦA(k + G, s; r)

}
, (31)

In the interstitial region the expression is simpler

δ±t′α′Ψλ(k, r)|Int =
∑
Gs

δ±t′α′A
Gs
λ (k)ΦA(k − q + G, s; r) (32)
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B. First order variational coefficients

In this subsection some details on the derivation of the first order variational coefficients

will be given. In view of the fact, that the perturbation δ−V leads to the first order correction

δ−Ψ, which translates with the wave vector k − q, it is convenient in the following to use

the Hamiltonian (H) and overlap matrices (O) defined in the space spanned by the basis

functions at both k and k − q points. For the unperturbed system, the matrix elements

(k,k−q) and (k−q,k) vanish, and the eigen vector corresponding to the eigen value Eλ(k)

has (k − q)-components equal to zero:

 Hkk 0

0 Hk−qk−q

− Eλ(k)

 Okk 0

0 Ok−qk−q


∣∣∣∣∣∣ Cλ(k)

0

∣∣∣∣∣∣ = 0 (33)

When a perturbation with the wave vector k−q is added to the unperturbed system, the

Hamiltonian and overlap matrices are modified in the elements (k,k − q) and (k − q,k).

Linearizing Eq.(33), we find

 δ−Hkk δ−Hkk−q

δ−Hk−qk δ−Hk−qk−q

− Eλ(k)

 δ−Okk δ−Okk−q

δ−Ok−qk δ−Ok−qk−q

 ∣∣∣∣∣∣ Cλ(k)

0

∣∣∣∣∣∣
= −

 Hkk 0

0 Hk−qk−q

− Eλ(k)

 Okk 0

0 Ok−qk−q

 ∣∣∣∣∣∣ 0

δ−Cλ(k)

∣∣∣∣∣∣
+δ−Eλ(k)

 Okk 0

0 Ok−qk−q

∣∣∣∣∣∣ Cλ(k)

0

∣∣∣∣∣∣ (34)

From the above system, one can find the first-order eigenvalue:

δ−Eλ(k) =
∑
jj′

C∗j
λ (k)

[
δ−Hjj′

kk − Eλ(k)δ−Ojj′
kk

]
Cj′

λ (k), (35)

which vanishes except for q = 0.

From this point we will suppose that q �= 0 in our considerations. The case with exactly

q = 0 can be treated in parallel with the degenerate case, as indicated in Ref.[9]. The

particular formulaes for the degenerate case will be given with special consideration further.

From Eq.(34), one can also obtain the equation for the first-order variational coefficients:
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∑
j′

[
Hjj′

k−qk−q − Eλ(k)Ojj′
k−qk−q

]
δ−Cj′

λ (k)

= −
∑

j′

[
δ−Hjj′

k−qk − Eλ(k)δ−Ojj′
k−qk

]
Cj′

λ (k) (36)

Expanding δ−Cλ(k) in (36) over the full set of the eigen vectors of the generalized eigen

value problem (Hk−q,k−q; Ok−q,k−q), we have (writing down the indexes explicitly):

δ−t′α′Cλ(k) =
∑

µ

H̄ t′α′
µλ (k) − Eλ(k)Ōt′α′

µλ (k)

Eλ(k) − Eµ(k − q)
Cµ(k − q) (37)

where

H̄ t′α′
µλ (k) =

∑
jj′

C∗j
µ (k − q)δ−t′α′H

jj′
k−qkCj′

λ (k)

=

∫
Ωt′

dr
[
δ̄−t′α′Ψ

†
µ(k − q, r)ĤΨλ(k, r) + Ψ†

µ(k − q, r)Ĥδ̄−t′α′Ψλ(k, r)
]

+

∫
Ω

drΨ†
µ(k − q, r)δ−t′α′Veff (r)Ψλ(k, r)

+

∫
St′

dS
[
Ψ†

µ(k − q, r)ĤkinΨλ(k, r)|MT − Ψ†
µ(k − q, r)ĤkinΨλ(k, r)|Int

]
(38)

and

Ōt′α′
µλ (k) =

∑
jj′

C∗j
µ (k − q)δ−t′α′O

jj′
k−qkCj′

λ (k)

=

∫
Ωt′

dr
[
δ̄−t′α′Ψ

†
µ(k − q, r)Ψλ(k, r) + Ψ†

µ(k − q, r)δ̄−t′α′Ψλ(k, r)
]

(39)

Making use of the time-reversal symmetry and the hermiticity of the Hamiltonian and

overlap matrices, it can be proved that both H̄µλ(k) and Ōµλ(k) have the property

H̄ t′α′
µλ (−k + q) = H̄ t′α′

λµ (k) (40)

In the equations (38) and (39) there are the gradients of the effective potential and

the gradients of the basis functions. Thus, they are not very convenient for the practical

calculations. However, by using the Gauss theorem, these equation can be simplified:
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H̄ t′α′
µλ (k) − Eλ(k)Ōt′α′

µλ (k) =

∫
Ωt′

dr
[
˘̄δ
−
t′α′Ψ†

µ(k − q, r)(Ĥ − Eλ(k))Ψλ(k, r)

+Ψ†
µ(k − q, r)(Ĥ − Eλ(k))˘̄δ

−
t′α′Ψλ(k, r)

]
+

∫
Ω

drΨ†
µ(k − q, r)δ̆−t′α′Veff (r)Ψλ(k, r)

−
∫

St′
dSαΨ†

µ(k − q, r)[Veff − Eλ(k)]Ψλ(k, r)

−
∫

St′
dSαΨ†

µ(k − q, r)ĤkinΨλ(k, r)|Int (41)

In the above equation the gradients are absent.

C. Construction δ−n

Using (28) in (25) we have for the linear response inside the MT-spheres:

δ−t′α′n(r)|t = 2
∑
kλ

fkλΨ
†
λ(k, r)

{∑
j′

δ−t′α′C
j′
λ (k)Φj′(k − q; r)

+iδtt′

[∑
G′s′

(G′)α′AG′s′
λ′ (k)ΦA(k + G′, s′; r) + kα′Ψλ(k, r)

]

−δtt′∇α′Ψλ(k, r)

}
, (42)

and in the interstitial:

δ−t′α′n(r) = 2
∑
kλ

fkλΨ
†
λ(k, r)

∑
G′s′

δ−t′α′A
G′s′
λ′ (k)ΦA(k − q + G′, s′; r) (43)

It is followed from (42) that indeed we can write for the linear response within the spheres:

δ−t′α′n(r)|t = δ̆−t′α′n(r) − δtt′∇α′n(r), (44)

The expressions (42) and (43) are valid if no degeneracy occurs in the calculations. If

the valence state (µ, k − q) is degenerate with the state (λ, k), it cannot be calculated in

the perturbative expression (37). Let us consider such a case with more details. Using (37),
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we may rewrite (43) or the part of (42) with δ−C as follows (we consider only the states

(µ, k − q) with Eµ(k − q) = Eλ(k)):

2
∑
kλ

fkλΨ
†
λ(k, r)

∑
j′

∑
µ(Ek−q

µ =Ek
λ )

H̄ t′α′
µλ (k) − Eλ(k)Ōt′α′

µλ (k)

Eλ(k) − Eµ(k − q)
Cj′

µ (k − q)Φj′(k − q; r)

= 2
∑
kλ

fkλΨ
†
λ(k, r)

∑
µ(Ek−q

µ =Ek
λ )

H̄ t′α′
µλ (k) − Eλ(k)Ōt′α′

µλ (k)

Eλ(k) − Eµ(k − q)
Ψλ(k − q, r)

= (considering explicitly the states (µ,−k + q))∑
kλ

∑
µ(Ek−q

µ =Ek
λ )

{
fkλΨ

†
λ(k, r)

H̄ t′α′
µλ (k) − Eλ(k)Ōt′α′

µλ (k)

Eλ(k) − Eµ(k − q)
Ψλ(k − q, r)

+f−k+qµΨ†
µ(−k + q, r)

H̄ t′α′
λµ (−k + q) − Eµ(−k + q)Ōt′α′

λµ (−k + q)

Eµ(−k + q) − Eλ(−k)
Ψµ(−k, r)

}
= (making use of the time-reversal symmetry and property (40) )∑
kλ

∑
µ(Ek−q

µ =Ek
λ )

fkλΨ
†
λ(k, r)Ψλ(k − q, r)

{
H̄ t′α′

µλ (k) − Eλ(k)Ōt′α′
µλ (k)

Eλ(k) − Eµ(k − q)

+
H̄ t′α′

µλ (k) − Eµ(k − q)Ōt′α′
µλ (k)

Eµ(k − q) − Eλ(k)

}
= −

∑
kλ

∑
µ(Ek−q

µ =Ek
λ )

fkλΨ
†
λ(k, r)Ōµλ(k)Ψλ(k − q, r) (45)

Equation (45) thus states that the coefficient in (37) for the degenerate levels must be

changed by −1
2
Ōt′α′

µλ (k)

D. Construction δ−Veff

The first order potentials consist of two parts: Coulomb and exchange-correlation. The

exchange-correlation part can be evaluated directly:

δ−t′α′Vxc(r) =
∂Vxc

∂n
δ−t′α′n(r), (46)

where we supposed the local density approximation (LDA).

Within the MT-spheres it is convenient to separate the term with the gradient of the

potential:
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δ−t′α′Vxc(r)|Rt =
∂Vxc

∂n
[δ̆−t′α′n(r) − δtt′e

−iqR∇α′n(r)] = δ̆−t′α′Vxc(r) − δtt′e
−iqR∇α′Vxc(r) (47)

The first order Coulomb potentials can be evaluated similar to the periodic potential5 of

the unperturbed crystal. To calculate them in the interstitial region, we rewrite the Coulomb

terms in (27) as follows:

δ−t′α′Vext(r) + 2

∫
Ω

dr′δ
−
t′α′n(r′)
| r − r′ | = 2

∫
Ω

dr′δ
−
t′α′nInt(r

′)
| r − r′ |

+2
∑
Rt

[∫
ΩRt

dr′ (δ
−
t′α′nMT (r′) − δ−t′α′nInt(r

′))
| r − r′ | − e−iqR ∂

∂t′α′

Zt

| r − R − t |
]

(48)

All first order variations that present in the sum over MT-spheres in (48) contribute to

the interstitial first order potential only via their multipoles, which are defined as

∫
Ωt

dr′(r′)lȲlm(r)
[
δ−t′α′nMT(r′) − δ−t′α′nInt(r

′)
]− Ztδl,1


δm,1, α

′ = x

δm,−1, α
′ = y

δm,0, α
′ = z

, (49)

where Ȳlm are real spherical functions.

So, we can replace these variations by smooth functions that are zero outside the spheres

and have multipoles equal to multipoles (49) of the true functions. A convenient choice is

to use a polynomial form5

ñt(r) =
∑
lm

Qlm
1

Sl+3
t

(
r

St

)l (
1 − r2

S2
t

)N

Ȳlm(r), (50)

where St is radius of the sphere.

This form has (N − 1) continuous derivatives and an analytic Fourier transform. The

corresponding multipole moments are

Qlm
2NN !(2l + 1)!!

(2l + 2N + 3)!!
(51)

From (49) and (51) we can find the values Qlm. Once this is done, we can determine the

Fourier transform δ−ñG of these smooth functions and rewrite the Eq.(48) as following
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2

∫
Ω

dr′
∑

G δ−t′α′nGei(G−q)r′

| r − r′ | + 2

∫
Ω

dr′
∑

G δ−t′α′ñGei(G−q)r′

| r − r′ |
=
∑
G

8π(δ−t′α′nG + δ−t′α′ñG)

| G − q |2 ei(G−q)r =
∑
G

δ−t′α′V
Coul
G ei(G−q)r (52)

Having determined the first order Coulomb potential in the interstitial region, we can

proceed with the derivation of it within the MT-spheres. To do that we must to integrate

Poisson’s equation in each sphere with true first order charge density. Since we have already

become the first order Coulomb potential in the interstitial region, the boundary condition

on the surfaces of the spheres is known. Writing the gradient of the Coulomb potential

explicitly, we have for the first order Coulomb potential within MT-sphere:

δ−t′α′V
Coul
lm (r)|t = −δtt′∇α′V Coul(r)

+
∑
lm

8πȲlm

2l + 1

[
1

rl+1

∫ r

0

(r′)l+2δ̆−t′α′nlm(r′)dr’ + rl

∫ St

r

δ̆−t′α′nlm(r′)
(r′)l−1

dr’

]

+
∑
lm

V̄lm

(
r

St

)l

(53)

The coefficients V̄lm are defined from the condition that the above expression is equal to

the interstitial first order Coulomb potential (52) on the surface of the sphere.

V. DYNAMICAL MATRIX

To obtain an explicit expression for the dynamical matrix we consider the second order

correction to the total energy after the perturbation (21) has been introduced to the crystal:

∆2Etot =
1

2N

∑
Rtα

∑
R′t′α′

∂2Etot

∂tRα∂tR′α′
∆tR(q)∆t′

R′(q) (54)

Defining the force matrix

VRtα;R′t′α′ =
∂2Etot

∂tRα∂tR′α′
, (55)

we have
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∆2Etot =
1

2

∑
tα

∑
t′α′

[
QtαQ∗

t′α′
∑
P

V0tα;P t′α′e−iqP + Q∗
tαQt′α′

∑
P

V0tα;P t′α′eiqP

]
=

∑
tα;t′α′

√
mtmt′QtαQ∗

t′α′Dtα;t′α′(q), (56)

where we used the standard definition of the dynamical matrix through the force matrix

Dtα;t′α′(q) =
∑
P

V0tα;P t′α′e−iqP (57)

From Eq.(56) we see, that

Dtα;t′α′(q) =
1√

mtmt′

∂2Etot

∂Qtα∂Q∗
t′α′

(58)

The first order derivative can be obtained analogously to the derivation of the Eq. (19)

in the case q = 0

∂Etot

∂Qtα

=
∑
R

eiqR

[∑
kλ

fkλ

{−i
∑
Gs

GA∗Gs
λ (k)

∫
ΩRt

drΦ†
A(k + G, s; r)[Ĥ − Eλ(k)]Ψλ(k, r)

+i
∑
G′s′

G′AG′s′
λ (k)

∫
ΩRt

drΨ†
λ(k, r)[Ĥ − Eλ(k)]ΦA(k + G′, s′; r)

−
∫

SRt

dSΨ†
λ(k, r)[Ĥkin − Eλ(k)]Ψλ(k, r)|Int}

−
∫

ΩRt

drVeff (r)∇nval(r) +

∫
ΩRt

drnc(r)∇Veff (r) − Zt∇αVcoul(r)|r=R+t

]
(59)

Let us now consider the second variation for each term in (59) separately.

A. Hellman-Feynman contribution to the dynamical matrice

The second variation of the HF contribution (20) gives

√
mtmt′D

HF
tα;t′α′(q) = −Zt∇αδ−t′α′Vcoul(r)|r=t = −Zt

[
∇αδ̆−t′α′Vcoul(r) − δtt′∇α∇α′Vcoul(r)

]
|r=t

(60)
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B. Core contribution to the dynamical matrice

In deriving the formula for the core contribution it is important to keep in mind that the

corresponding first order contribution in (59) is depended on the position of the MT-sphere.

Thus,

√
mtmt′D

c
tα;t′α′(q) =

∫
Ωt

dr

[(
δ̆−t′α′nc(r) − δtt′∇α′nc(r)

)
∇αVeff (r)

+nc(r)∇α

(
δ̆−t′α′Veff (r) − δta′∇α′Veff (r)

)]
+δtt′

∫
Ωt

dr∇α′ [nc(r)∇αVeff (r)]

=

∫
Ωt

dr
[
δ̆−t′α′nc(r)∇αVeff (r) + nc(r)∇αδ̆−t′α′Veff (r)

]
(61)

C. Valence contribution to the dynamical matrix

Valence contribution is obtained similarly to obtaining the core contribution:

√
mtmt′D

val
tα;t′α′(q) = −

∫
Ωt

dr
[
δ̆−V t′α′

eff (r)∇αnval(r) + Veff (r)∇αδ̆−nt′α′
val (r)

]
(62)

D. Surface contribution to the dynamical matrix

Let us consider the contribution to the dynamical matrix from the surface term in (59).

√
mtmt′D

surf
tα;t′α′(q) = −

∑
kλ

fkλ

∫
St

dSα

[
δ−t′α′Ψ

†
λ(k, r)(Ĥkin − Eλ(k))Ψλ(k, r)|Int

+Ψ†
λ(k, r)(Ĥkin − Eλ(k))δ̆−t′α′Ψλ(k, r)|Int

]
= (changing k ↔ −k in the first term and using the time-reversal symmetry)

−
∑
kλ

fkλ{
∫

St

dSα

[
δ−t′α′Ψ

T
λ (k, r)(Ĥ∗

kin − Eλ(k))Ψ∗
λ(k, r)|Int

+Ψ†
λ(k, r)(Ĥkin − Eλ(k))δ−t′α′Ψλ(k, r)|Int

]
(63)

Now let us consider the degenerate case Eµ(k − q) = Eλ(k). With the Eqn.(37) we will

consider explicitly the (−k + q)-term in the above equation and with µ-sum including only
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the degenerate levels:

Dsurf
tα;t′α′(q) = −1

2

∑
kλ

∑
µ

{
fkλ

H̄ t′α′
µλ (k) − Eλ(k)Ōt′α′

µλ (k)

Eλ(k) − Eµ(k − q)

×
∫

St

dSα

[
ΨT

µ (k − q, r)(Ĥ∗
kin − Eλ(k))Ψ∗

λ(k, r)|Int

+Ψ†
λ(k, r)(Ĥkin − Eλ(k))Ψµ(k − q, r)|Int

]
+f−k+qµ

H̄ t′α′
λµ (−k + q) − Eµ(−k + q)Ōt′α′

λµ (−k + q)

Eµ(−k + q) − Eλ(−k)

×
∫

St

dSα

[
ΨT

λ (−k, r)(Ĥ∗
kin − Eµ(−k + q))Ψ∗

λ(−k + q, r)|Int

+Ψ†
µ(−k + q, r)(Ĥkin − Eµ(−k + q))Ψλ(−k, r)|Int

]}
= (making use of the time-reversal symmetry and property (40) )

−
∑
kλ

∑
µ

fkλ

{
−1

2
Ōt′α′

µλ (k)

∫
St

dSα

[
ΨT

µ (k − q, r)(Ĥ∗
kin − Eλ(k))Ψ∗

λ(k, r)|Int

+Ψ†
λ(k, r)(Ĥkin − Eλ(k))Ψµ(k − q, r)|Int

]
−
[
H̄ t′α′

µλ (k) − Eλ(k)Ōt′α′
µλ (k)

] ∫
St

dSαΨ†
λ(k, r)Ψµ(k − q, r)|Int

}
(64)

The first integral in the above equation obtained simply from (63) if we replace the

coefficient in (37) for the degenerate levels by −1
2
Ōt′α′

µλ (k) as we already noticed after Eq.(45).

The equation (64) thus states that there is an additional contribution from the degenerate

levels as given by the last term in (64).

E. Band contribution to the dynamical matrix

Consider now the contribution to the dynamical matrix from the first two terms in (59).

Using definition (31) and time-reversal symmetry, we can rewrite this first order variation

as

∂Eband
tot

∂Qtα

=
∑
R

e−iqR
∑
kλ

fkλ

{∫
Ωt

dr˘̄δ
+

tαΨ†
λ(k, r)[Ĥ − Eλ(k)]Ψλ(k, r)∫

Ωt

drΨ†
λ(k, r)[Ĥ − Eλ(k)]˘̄δ

+

tαΨλ(k, r)

}
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=
∑
R

e−iqR
∑
kλ

fkλ

{∫
Ωt

dr˘̄δ
+

tαΨT
λ (k, r)[Ĥ∗ − Eλ(k)]Ψ∗

λ(k, r)∫
Ωt

drΨ†
λ(k, r)[Ĥ − Eλ(k)]˘̄δ

+

tαΨλ(k, r)

}
(65)

Performing second variation we arrive to the band contribution to the dynamical matrix

√
mtmt′D

band
tα;t′α′(q) =

∑
kλ

fkλ

{∫
Ωt

dr
[
δ̆−t′α′

˘̄δ
+

tαΨT
λ (k, r)[Ĥ∗ − Eλ(k)]Ψ∗

λ(k, r)

+Ψ†
λ(k, r)[Ĥ − Eλ(k)]δ̆−t′α′

˘̄δ
+

tαΨλ(k, r)
]

+∫
Ωt

dr
[
˘̄δ

+

tαΨ†
λ(k, r)[Ĥ − Eλ(k)]δ̆−t′α′Ψλ(k, r)

+δ̆−t′α′Ψ
T
λ (k, r)[Ĥ∗ − Eλ(k)]˘̄δ

+

tαΨ∗
λ(k, r)

]
+

∫
Ωt

dr˘̄δ
+

tαΨ†
λ(k, r)δ̆−t′α′VeffΨλ(k, r)

+

∫
Ωt

drΨ†
λ(k, r)δ̆−t′α′Veff

˘̄δ
+

tαΨλ(k, r)

}
, (66)

where

δ̆−t′α′
˘̄δ

+

tαΨλ(k, r)|t = i
∑
Gs

(k − q + G)αδ−t′α′A
Gs
λ (k)ΦA(k − q + G, s; r)

+i(k − q)α

∑
n

δ−t′α′B
tn
λ (k)Φtn

B (k − q; r)

−δtt′
[∑

Gs

(k + G)α(k + G)α′AGs
λ (k)ΦA(k + G, s; r)

+kαkα′
∑

n

Btn
λ (k)Φtn

B (k; r)
]

(67)

Let us now consider the degenerate case. Special treatment is needed only for the first

and second integrals in (66). And there is contribution only from the terms that contain the

variation of the coefficients. Corresponding part of δ̆−t′α′
˘̄δ

+

tαΨλ(k, r) is

i
∑
Gs

(k − q + G)αδ−t′α′A
Gs
λ (k)ΦA(k − q + G, s; r)

+i(k − q)α

∑
n

δ−t′α′B
tn
λ (k)Φtn

B (k − q; r)

=
∑

µ

H̄ t′α′
µλ (k) − Eλ(k)Ōt′α′

µλ (k)

Eλ(k) − Eµ(k − q)
˘̄δ

+

t′α′Ψµ(k − q, r), (68)
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where we used (37) and (31). The part with singularity in δ̆−t′α′Ψλ(k, r) is

∑
Gs

δ−t′α′A
Gs
λ (k)ΦA(k − q + G, s; r) +

∑
n

δ−t′α′B
tn
λ (k)Φtn

B (k − q; r)

=
∑

µ

H̄ t′α′
µλ (k) − Eλ(k)Ōt′α′

µλ (k)

Eλ(k) − Eµ(k − q)
Ψµ(k − q, r) (69)

Using (68) and (69), and similar to the consideration of degeneracy in the case of surface

contribution, we obtain from (66) that 1)the coefficients at the degenerate levels in the

expansion (37) must be replaced with −1
2
Ōt′α′

µλ (k), and 2)there is an additional contribution:

−
∑
kλ

∑
µ

fkλ

[
H̄ t′α′

µλ (k) − Eλ(k)Ōt′α′
µλ (k)

]
×
[∫

Ωt

drΨ†
λ(k, r)˘̄δ

+

tαΨµ(k − q, r) +

∫
Ωt

dr˘̄δ
+

tαΨ†
λ(k, r)Ψµ(k − q, r)

]
(70)

VI. CONCLUSIONS AND PLANS FOR THE FUTURE

In summary, the relativistic formulations of the ab-initio calculation of the atomic forces

and the phonon spectra with full-potential linear-augmented-plane-wave method are pre-

sented in this report. The atomic forces, calculated for the α-Pu, have been used to esti-

mate the effect of geometry relaxation on the ground state properties of α-Pu. The program

code with the possibility of the calculation of the phonon spectra is now under testing. The

results of these tests and the calculation of the phonon spectrum of α-U are planned to be

included in the next report.
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